Connect with us

Health News

Deaths attributable to air pollution have dropped with reductions in vehicle emissions, study shows

Jacob Scott

Published

on

Decreasing vehicle emissions since 2008 have reduced by thousands the number of deaths attributable to air pollution, yielding billions of dollars in benefits to society, according to a new study led by researchers at Harvard T.H. Chan School of Public Health.


The study also found that although the public health burden of large trucks has been greatly reduced, passenger light-duty vehicles, such as SUVs and pickup trucks, continue to contribute a significant amount of air pollution in major metropolitan areas.


The study was published online December 13, 2021 in the journal PNAS.


Recent reductions in vehicle emissions have yielded major health benefits, even though only small progress has been made on reducing their climate impact. Our results indicate that to achieve further public health and climate gains, even more stringent policies will be required.”


Ernani Choma, first author, research fellow in Harvard Chan School’s Department of Environmental Health


Although the health and climate burden of vehicle emissions in the U.S. has been widely studied, the benefits of recent reductions in vehicle emissions–spurred by federal air pollution regulations and technological innovations by car manufacturers–were not well known. The new study provides estimates that compare the actual health and climate impact of reduced vehicle emissions with what that impact would have been had emissions not been reduced. Researchers calculated the so-called “social benefits” attributable to decreasing emissions–in this case, the monetary value to society of the reduction in deaths attributable to air pollution and climate impacts avoided.


Using recent national emissions data, the researchers modeled four scenarios for emissions in 2017: actual emissions as well as three alternative scenarios in which county-level emissions were the same as they were in 2014, 2011, and 2008. Each of the scenarios factored in the types of vehicles being driven and how many miles they traveled, detailed data about air pollution levels across the U.S., mortality rates, and trends in demographics–including an aging population that is becoming more susceptible to air pollution over time.


The researchers estimated that reductions in emissions yielded $270 billion in social benefits in the U.S. in 2017–mostly due to the estimated value of reduced mortality risk from fine particulate matter (PM2.5) air pollution–and, to a lesser degree, to reduced “social costs” from greenhouse gas emissions, which are calculated from a range of factors such as human health impacts, changes in agricultural productivity, natural disasters, risk of conflict, and more.


The researchers also estimated that deaths attributable to air pollution due to vehicle emissions dropped from 27,700 in 2008 to 19,800 in 2017. The decrease in deaths was not as large as researchers expected, because many factors offset the progress in reducing emissions, such as a larger and aging population, larger vehicles replacing smaller ones, and more miles traveled per vehicle. On the other hand, the authors noted, if vehicles were still emitting at 2008 levels, those emissions would have caused 48,200 deaths attributable to air pollution in 2017–which would have represented a 74% increase between 2008 and 2017.


The study found significant recent progress in reducing emissions from heavy-duty trucks, but less progress with passenger light-duty vehicles, including cars, SUVs, and pickup trucks. Passenger light-duty vehicles accounted for two-thirds of the public health burden from transportation-related air pollution in 2017, the authors said. They noted that emissions from these vehicles in large metropolitan areas are so harmful that they are responsible for 30% more attributable deaths than all heavy-duty trucks across the nation.


“If the trends of increased population density with an aging population, and a shift to larger passenger vehicles continue, emissions, especially in urban areas, will continue to become more harmful and it will be harder to achieve further public health gains by small incremental improvements in new vehicles,” said John Spengler, Akira Yamaguchi Professor of Environmental Health and Human Habitation and senior author of the study. “Our study findings strengthen the case for policies at the municipal level that encourage electric vehicles while discouraging conventional gasoline vehicles and for making our cities more accessible for non-motorized transportation such as biking or walking.”


Other Harvard Chan School co-authors of the study included John Evans, Joel Schwartz, and James Hammitt.


Funding for the study was provided by Harvard University, from which Choma received financial support during his doctoral program.

Source:
Journal reference:

Choma, E.F., et al. (2021) Health benefits of decreases in on-road transportation emissions in the United States from 2008 to 2017. PNAS. doi.org/10.1073/pnas.2107402118.

Read More

Source: news-medical.net

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published.

Health News

Unraveling How Strigoractone Hormone Regulates Massive Gene Networks Controlling Plant Growth

Jacob Scott

Published

on

As sessile organisms, plants have to continually adapt their growth and architecture to the ever-changing environment. To do so, plants have evolved distinct molecular mechanisms to sense and respond to the environment and integrate the signals from outside with endogenous developmental programs.

New research from Nitzan Shabek’s laboratory at the UC Davis College of Biological Sciences, published in Nature Plants, unravels the underlying mechanism of protein targeting and destruction in a specific plant hormone signaling pathway.

Our lab aims at deciphering sensing mechanisms in plants and understanding how specific enzymes function can be regulated at the molecular levels. We have been studying a new plant hormone signal, strigolactone, that governs numerous processes of growth and development including branching and root architecture.”

Nitzan Shabek, assistant professor of biochemistry and structural biology, Department of Plant Biology

The work stems from a study by Shabek, published in Nature in 2018, unravelling molecular and structural changes in an enzyme, MAX2 (or D3) ubiquitin ligase. MAX2 was found in locked or unlocked forms that can recruit a strigolactone sensor, D14, and target for destruction a DNA transcriptional repressor complex, D53. Ubiquitins are small proteins, found in all eukaryotes, that “tag” other proteins for destruction within a cell.

To find the key to unlock MAX2 and to better understand its molecular dynamics in plants, postdoctoral fellows Lior Tal and Malathy Palayam, with junior specialist Aleczander Young, used an approach that integrated advanced structural biology, biochemistry, and plant genetics.

“We leveraged structure-guided approaches to systemically mutate MAX2 enzyme in Arabidopsis and created a MAX2 stuck in an unlocked form”, said Shabek, “some of these mutations were made by guiding CRISPR/Cas9 genome editing thus providing us a discovery platform to study and analyze the different signaling outputs and illuminate the role of MAX2 dynamics.”


They found that in the unlocked conformation, MAX2 can target the repressor proteins and biochemically decorate them with small ubiquitin proteins, tagging them for destruction. Removing these repressors allows other genes to be expressed – activating a massive gene network that governs shoot branching, root architecture, leaf senescence, and symbiosis with fungi, Shabek said.

Sending these repressors to the proteasome disposal complexes requires the enzyme to relock again. The team also showed that MAX2 not only target the repressors proteins, but once it is locked the strigolactone sensor itself gets destroyed, returning the system to its original state.

Finally, the study uncovered the key to the lock, an organic acid metabolite that can directly trigger the conformational switch.

“Beyond the implication in plants signaling, this is the first work that placed a primary metabolite as a direct new regulator of this type of ubiquitin ligase enzymes and will open new avenues of study in this direction,” Shabek said.

Additional coauthors on the paper are specialist Mily Ron and Professor Anne Britt, Department of Plant Biology. The study was supported by NSF CAREER and EAGER grants to Shabek. X-ray crystallography data was obtained at the Advanced Light Source, Lawrence Berkeley National Laboratory, a U.S. Department of Energy user facility.

Source:
Journal reference:

Tal, L., et al. (2022) A conformational switch in the SCF-D3/MAX2 ubiquitin ligase facilitates strigolactone signalling. Nature Plants. doi.org/10.1038/s41477-022-01145-7.

Read More

Original Article: news-medical.net

Continue Reading

Health News

UrFU Sociologists Identify Digital Fears Among Young People

Jacob Scott

Published

on

Sociologists at the Ural Federal University (UrFU) have identified digital fears among young people. According to experts, these are additional fears that do not replace, but complement and reinforce traditional ones. They emerged against the background of uncertainty, the growth of forces beyond human control. Developed emotional intelligence, creativity, and the ability to collaborate help to overcome them.

In the study, sociologists interviewed 1,050 people aged 18-30. Respondents were asked to assess which digital risks concern them most. The study was launched in 2020 and the results were published in April 2022 in the Changing Societies & Personalities journal.

The first group of fears is influence and control. It touches on the problem of interference with privacy by technical means. This category is the most significant for young people: 55.8% are afraid of total control by means of video-surveillance and monitoring software on their mobile devices. 48.5% of respondents believe they are at risk of wiretapping, tracking content in social networks, and inability to keep correspondence secret.”

Natalia Antonova, Professor, Department of Applied Sociology, UrFU

45.8% of young people fear the manipulative influence of the media and an increase in fake news. At the same time, only 27.8% and 18.1% of respondents are concerned about microchipping and genetic manipulation, respectively. It is likely that these threats seem more controllable, both from the individual (through control of food choices, medical procedures, etc.) and from government programs, the researchers believe.

The second group of concerns is crime and security. Here young people are wary of illegal actions using digital technology.

“One of the main fears of 56% of young people is the security of personal data. This is related both to the growth of personal information in social networks and messengers, and to the growth of hacker attacks and viruses. 42.9% of young citizens are afraid of Internet fraudsters, and 25.8% are afraid of losing important information, including smashing their phones, not saving data, forgetting their passwords, or being without an Internet connection,” explains Sofia Abramova, Associate Professor at the Department of Applied Sociology at UrFU.

The third group of fears is based on changes in the way and pace of life, ways of interaction. Thus, 28.4% of respondents indicate a constant lack of time, the acceleration of communications, and worries about not being able to complete all tasks in time. Respondents are also concerned about the growth of online communications and communications with electronic systems (bots, autoresponders, product systems, etc.).

“As a result, 15.3% of young people raise problems related to increasing social distrust against the background of increasing dependence of human life and health on other people and electronic systems: in public transport, planes, elevators, medical intervention,” explains Sofia Abramova.

Respondents also fear the negative consequences of technological development. For example, 22.2% of young citizens fear the robotization of labor processes and the displacement of humans by robots. 14.6% speak directly about negative emotions in relation to the expansion of artificial intelligence.

The fifth type of fear is social inequality. Young people negatively assess the growth of inequality in access to information resources and technology, the exclusion of citizens from the economy depending on the level of digital competence and education, and age. As a result, they fear that benefits will be distributed more and more unequally, both among the inhabitants of the country and between countries.

“It is noteworthy that young people are simultaneously afraid of total surveillance via phone and afraid of being left without mobile devices. Fears shape the irrational behavior of the digital generation, entailing serious transformations in everyday life,” says Natalia Antonova.

Source:
Journal reference:

Abramova, S.B., et al. (2022) Digital Fears Experienced by Young People in the Age of Technoscience. Changing Societies & Personalities. doi.org/10.15826/csp.2022.6.1.163.

Read More

Original Source: news-medical.net

Continue Reading

Health News

Study demonstrates increased incidence of SARS-CoV-2 Omicron breakthrough infection in cancer patients

Jacob Scott

Published

on

In a recently published article in the journal Cancer Cell, scientists have demonstrated the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in cancer patients residing in Austria and Italy. The study reveals an induction in Omicron breakthrough infections in patients with hematologic and solid cancers.

Study: Enhanced SARS-CoV-2 breakthrough infections in patients with hematologic and solid cancers due to Omicron. Image Credit: Lightspring/Shutterstock

Background

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of the coronavirus disease 2019 (COVID-19) pandemic, has been found to cause severe infections in immunocompromised patients, including cancer patients. Moreover, a relatively lower level of neutralizing antibodies in response to COVID-19 vaccines has also been observed in cancer patients, especially those receiving B cell-targeting therapies.

The emergence of SARS-CoV-2 variants with improved immune fitness, such as delta and Omicron variants, has caused a sharp increase in breakthrough infections even in fully vaccinated individuals. However, the vaccines still show high protective efficacy against severe and fatal infections. COVID-19 vaccines have shown acceptable efficacy against severe disease, even in Omicron-infected cancer patients. However, the isolation and quarantine measures associated with SARS-CoV-2 infection may impair the routine administration of anticancer therapy, which can reduce the survival prognosis in cancer patients.

In the current study, the scientists have assessed the incidence of SARS-CoV-2 infection in cancer patients throughout the pandemic.

Study design

The study included 3,959 cancer patients, of whom 77% had solid cancer, and 23% had hematologic cancer. About 69% of the patients did not receive any anticancer treatment at the time of COVID-19 vaccination. Regarding vaccine coverage, about 85% of the patients had received at least one vaccine dose, and 15% remained unvaccinated. The incidence of SARS-CoV-2 infection in these patients was assessed between February 2020 and 2022.

Important observations

SARS-CoV-2 infection was detected in about 24% of the patients during the study period. During the delta-dominated wave, vaccine breakthrough infection was observed in 43% of the patients. In contrast, a significantly higher percentage of breakthrough infection (70%) was observed among the patients during the Omicron-dominated wave. During both delta and Omicron waves, cancer patients receiving systemic anticancer treatment showed a significantly higher percentage of breakthrough infection than those not receiving treatment (83% vs. 56%).

Regarding disease severity irrespective of vaccination status, a higher frequency of COVID-19-related hospitalization was observed during the delta wave compared to that during the Omicron wave. However, a relatively shorter duration of hospital stay was observed in vaccinated patients compared to that in unvaccinated patients. In addition, only 9% of patients with breakthrough infections were admitted to the intensive care unit (ICU). This highlights the protective efficacy of COVID-19 vaccines against severe disease.

Humoral immune response to vaccination

To determine vaccine-induced antibody response against delta and Omicron variants, the scientists measured blood levels of anti-delta and anti-Omicron spike receptor-binding domain (RBD) antibodies in a total of 78 cancer patients. In the analysis, they also included 25 healthcare workers as controls.

In response to vaccination, healthcare workers showed higher levels of total anti-spike antibodies compared to cancer patients. The lowest level of wildtype RBD-specific antibodies was observed in hematologic cancer patients receiving B cell-targeted treatment, followed by hematologic cancer patients not receiving B cell-targeted treatment and patients with solid tumors. A similar trend was observed for delta- and Omicron-specific spike RBD antibodies.

The serum samples collected from hematologic cancer patients without B cell-targeted treatment and solid tumor patients significantly inhibited the interaction between wildtype/delta RBD and angiotensin-converting enzyme 2 (ACE2; host cell receptor for viral entry). However, a significantly lower level of inhibition was observed for patients receiving B cell-targeted treatment. Importantly, a marked reduction in inhibition of Omicron RBD – ACE2 interaction was observed for all patients with solid tumors and hematologic cancer.

Study significance

The study demonstrates an increased incidence of vaccine breakthrough infections but a reduced disease severity among patients with solid tumors and hematologic cancer during the Omicron wave compared to the delta wave.

The study also highlights that COVID-19 vaccine-induced antibody response is lower in cancer patients than in healthy individuals. The reduction in antibody response is highest among hematologic patients receiving B cell-targeted treatment. Overall, a significant impairment in vaccine-induced Omicron neutralization has been observed in cancer patients.

Journal reference:
Mair, M. et al. (2022) “Enhanced SARS-CoV-2 breakthrough infections in patients with hematologic and solid cancers due to Omicron”, Cancer Cell. doi: 10.1016/j.ccell.2022.04.003. https://www.cell.com/cancer-cell/fulltext/S1535-6108(22)00165-9

Read More

Source: news-medical.net

Continue Reading

Trending

XTPE.com